

MEC2015 : FLUID MECHANICS

- Administration
- Thermodynamics / Solid Mechanics Review - Basic Calculus Review

MEC2015 Fluid Mechanics - 3 Units - Required / Sophomore

- ➢ Pre-Requisite : MEC2018熱力學, PRI4051-01產業數學(PRI4025工學數學1, MEC2035機工解析) or Consent by Lecturer(先受科目認定試驗)
- ▶ Text : <u>Fluid Mechanics</u> 8th ed. -Frank M. White -McGraw Hill/ 飜譯本 Lecture Note on E-Class
- > Lecture given under assumption that students have <u>actually read the material</u>
- Students expected to study at least <u>nine hours/wk</u> on this subject
- ➢ <u>Grading</u>: DGU Guidelines
 - HW(15) < 60%; Quiz[Best12](10) < 40% -1 Final Grade

3 Exams (75) Sat at 11AM ; Absence on any exam Final grade of F Participation, Q&A(~5)

Can be readjusted depending on in-class or on-line lecture

Plagiarism : Getting outside help on Quiz/Exam, Etc.

1st offense -1 Final Grade 2nd offense Final grade of F

Lecture Schedule (Tentative)

Wk	Lecture	HW	Wk	Lecture	HW
1-9/1	Admin/Review Ch.1: 1,11 Ch.1: 2~4, 6, 7	1 2	9-10/27	Ch.3: 5 Ch.4: 1~2	8
2-9/8	Ch.1: 5, 8, 9 / Ch.4: 7 Ch.2: 1~4, 10	3	10-11/3	Ch.4: 3, 6, 10 Q&A	
3-9/15	Ch.2: 5 Ch.2: 6~7	4	11-11/10	<u>Exam #2 (11/12)</u> Ch.6: 1~3	9
4-9/22	Ch.2: 8~9 Ch.5: 1~3	5	12-11/17	Ch.6: 6, 7, 10 Ch.6: 8. 9, 11, 12	
5-9/29	Ch.5: 3~5 Q&A		13-11/24	Ch.11: 3~5 Ch.7: 1~5	10 11
6-10/6	Exam #1 (10/6) Ch.3: 1~3	6	14-12/1	Ch.7: 6 Ch.9: 1~4	12
7-10/13	Ch.3: 4 Ch.3: 4		15-12/8	Ch.9: 5, 6, 9 Q&A	
8-10/20	Ch.3: 6 / Ch.11: 1,2,6 Ch.3: 7, 5	7		<u>Exam#3 (12/17)</u>	

Dept. Mechanical Robotics & Energy Engineering

MEC2015

FLUIDS Engineering LAB

Course Objective

- 1. Students should be able to <u>utilize basic fluid mechanical principles</u> to understand, formulate and solve fluids engineering problems.
- 2. Students should be able to discern fluids engineering part of a mechanical engineering problem and apply appropriate <u>fluid mechanical principles and</u> <u>analytical methods</u> to solve the problem.
- 3. Students should be able to <u>utilize Moody diagram</u> in solving piping problems and understand the basic working principles of <u>fluid meters including manometers</u>.

Learning Outcomes

[1] 수학, 과학, 공학 및 컴퓨터 지식을 기계공학문제 해결에 활용할 수 있는 능력

An ability to apply the knowledge of mathematics, basic science, engineering, and information technology to solve engineering problems

[3] 기계공학문제를 물리학적으로 단순화 시킨 후 수학적으로 공식화할 수 있는 능력 An ability to define and formulate the engineering problems

System(시스템)

VS.

- Identifiable mass
- Physical Laws apply

- Control Volume(檢査體積)
 - Space surrounding a region of interest
 - Stationary/Moving, Constant/Varying

(Thermodynamic) **Property** ~ Uniquely defined state of a substance

- pressure, p
- internal energy, U u enthalpy, H h volume, V v
 - Scalar (intensive, extensive) 州기性質 ヨ기性質

Vector : <u>Need more than 1 number</u> Velocity $\vec{v} = (v_1, v_2, v_3)$ Force $\vec{F} = (F_1, F_2, F_3)$ Displacement $\vec{x} = (x_1, x_2, x_3)$

- temperature, T - density, ρ

Types of Energy

- Kinetic E. $\frac{1}{2}mv^2$
- Potential E.
 - E. $mg\Delta z$
- Internal E. U = mu

Thermodynamics 1st Law

- Conservation of Energy applied to Heat & Thermodynamic Processes
- Relationship between

Total Energy, Heat & Work of a System

$$\Delta E = \frac{\delta Q}{\delta W} - \frac{\delta W}{\delta W}$$

Enthalpy

$$h = u + pv \quad H = U + pV$$

Work done by fluid as it enters the C.V. is ;

$$W_{flow} = FL = (pA)L = pV$$
 $\therefore w = W/m = pv$
Flow Work(流動일)
Total Energy carried by a unit of mass as it crosses the
Control Surface is

$$e = (u + pv) + \frac{v^2}{2} + gz = h + \frac{v^2}{2} + gz$$

Force, Torque

<u>Force</u>: Any influence which tends to change the motion of an object $\vec{F} = \frac{d(m\vec{V})}{dt} = m\vec{a} \quad [\text{ kg x m/s}^2 = \text{N}]$

Vector quantity ~ Direction, Magnitude

Inertia : resistance of any object to any change in its state of motion

LinearMassmkg \vec{F} \vec{a} RotationalMoment of Inertia $I=mxr^2$ $kg\cdot m^2$ \downarrow

Torque : Rotational motion of an object

$$\vec{r} \times \vec{F} = \vec{T} = \frac{d(I\omega)}{dt} = I\vec{\alpha} \quad [\text{kg} \cdot \text{m}^2/\text{s}^2 = \text{N} \cdot \text{m}]$$

 $\vec{F}_1 = (0, -1)$ $\vec{F}_2 = (0, -1)$ $\vec{F}_2 = (0, -1)$ $\vec{F}_1 = \vec{F}_2 = \vec{F}_3$?

<u>Stress</u>: Force per Unit Area [N/m² = Pa]

Shear Stress(剪斷應力)

Q : Two wooden members are joined by glue. If the maximum allowable shearing stress on the glued splice is 500 kPa, find the maximum load P.

Solid Mechanics Review

Free Body Diagrams(自由物體圖) are drawings used to show relative MAGNITUDE and DIRECTION of ALL FORCES acting upon an object of interest in a given situation.

① Separate only the object that you are interested in.

② Find all forces acting on the object and draw appropriate force vectors.

Forces important in Fluid Mechanics

 $\vec{F}_{\text{pressure}} + \vec{F}_{\text{viscosity}} + \vec{F}_{\text{gravity}} + \vec{F}_{\text{Drag/Lift}} + \vec{F}_{\text{Surface Tension}} + \cdots = \frac{d(m\vec{v})}{dt} = m\vec{a}$

Moment of Inertia

MEC2015

Dimension M-L-T1. from definition: Force= ma = $M L T^{-2}$ $a = \Delta v / \Delta t = (\Delta x / \Delta t) / \Delta t = \Delta x / (\Delta t)^2 \sim LT^{-2}$ 2. from units: Force ~ Newton ~ kg·m/s² ~ $ML T^{-2}$ [M] kg [L] m [T] s $[\Theta]$ K (SI) Unit mass 1 liter of water = 1 kg = 1000 g = 2.205 lb_m $\frac{p_1}{\rho} + \frac{V_1^2}{2} + gz_1 = \frac{p_2}{\rho} + \frac{V_2^2}{2} + gz_2 \quad [L^2 T^{-2}]$ Dimensional Consistency Dimensional Inconsistency: $Q = \frac{2}{3}c_d b\sqrt{2g} h^{1.5}$ $Q \text{ [m^3/s]} b, h \text{ [m]} c_d \text{ [-]}$ $EER = \frac{\text{cooling rate}}{\text{electrical input}} = \frac{\text{btu/hr}}{\text{W}}$ Inconsistency in Units :

Vector :
$$\vec{f}(t) = f_x(t)\hat{i} + f_y(t)\hat{j} + f_z(t)\hat{k} = (f_x, f_y, f_z)$$

 $\vec{g}(t) = g_x(t)\hat{i} + g_y(t)\hat{j} + g_z(t)\hat{k} = (g_x, g_y, g_z)$
Vector Identity : $\vec{f} = \vec{g}$ iff $f_x = g_x, f_y = g_y, f_z = g_z$

Right-hand Rule

Slope, Rate of Change, Gradient

Gradient ; ∇

- Points in the direction of greatest increase of function
- Magnitude is the greatest rate of increase of function

1. Divergence(發散)

$$\nabla \cdot \vec{V} = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j}\right) \cdot \left(u\,\hat{i} + v\,\hat{j}\right) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

A measure of the magnitude of a vector field's source(+) or sink(-).

There is more leaving than entering
It is getting less dense
There is a Source

$$\nabla \cdot \vec{V} = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j}\right) \cdot \left(x\hat{i} + 0\hat{j}\right) = 1 > 0$$

2. Curl(回轉)

$$\nabla \times \vec{V} = (\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}) \times (u\hat{i} + v\hat{j} + w\hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix}$$

A measure of an infinitesimal rotation of a vector field. Irrotational if zero.

Linear Approximation & Taylor Series

Make approximation of complex functions using tangent line at a point

Taylor Series :
$$f(t) = f(a) + f'(a)(t-a) + \frac{f''(a)}{2!}(t-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(t-a)^n + \dots$$

 $f(x+dx) = f(x) + f'(x)dx + \frac{f''(x)}{2!}(dx)^2 + \dots + \frac{f^{(n)}(x)}{n!}(dx)^n + \dots$

if dx << 1;

<u>Chain Rule</u>: Formula for computing the derivative of a composition of two or more functions or function of functions

1. If
$$y = f(u)$$
 $u = g(x)$; $y = f\{g(x)\}$, then $\frac{df}{dx} = \frac{df}{du} \times \frac{du}{dx}$

(Ex.) $y = u^2 + 3, u = 2x + 1$

2. If
$$z = f(x, y)$$
 $x = g(t), y = h(t)$; $z = f\{g(t), h(t)\}$, then $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$

(Ex.)
$$z = x^2 + 3y; x = 2t, y = e^{2t}$$

or,
$$z = x^2 + 3y = 4t^2 + 3e^{2t}$$

Single Variable :

$$\frac{df(x)}{dx} = x^2 + 1 \quad df = (x^2 + 1) \, dx \quad \int df = \int (x^2 + 1) \, dx \quad \therefore f(x) = \frac{1}{3} x^3 + x$$

<u>Multi-Variable</u>: $\frac{\partial f}{\partial x} = x^2 - y^2$ $\frac{\partial f(x, y)}{\partial x}|_{y=const} = x^2 - y^2$ $\int df = \int (x^2 - y^2) \, dx = \int x^2 \, dx - y^2 \int dx = \frac{1}{2} x^3 + c_1 - y^2 x + c_2 = f$ $\int df = \int (x^2 - y^2) \, dx = \frac{1}{2} x^3 - xy^2 + c \quad = f(x, y)$ $\frac{\partial f}{\partial y} = -2xy + 1 \qquad \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left\{ \frac{1}{3}x^3 - xy^2 + g(y) \right\} = -2xy + g'(y)$ $\rightarrow f(x, y) = \frac{1}{2}x^3 - xy^2 + y + c$ g'(y) = 1 $\therefore -2xy+1$ = -2xy + g'(y) $\therefore g(y) = y + c$

Fluid (流體) Mechanics (力學)

Fluid mechanics is the study of fluids and their effect on boundaries in contact with them either in motion or at rest.

Based on the Principles of Conservation of Mass & Energy, Newton's 2nd Law of Motion,

we want to know;

- Will the dam stand?

(Hydrostatic Pressure)

- What is the thrust? - How much power is generated?

(Linear Momentum Equation)

High Reservoir Dam Dam Low Reservoir

(Energy Equation)

- What is the max. velocity?

(Navier-Stokes Equation)

- How big a pump?

(Moody Chart)

(Drag Coefficient)

Review

What you should KNOW!

- 1. Course Requirements and Grading Policy
- 2. Basic Thermodynamic Concepts & Properties
- 3. Basic Solid Mechanic Concepts & F.B.D.
- 4. Dimensions, SI Units
- 5. Basic Vector Calculus and Multivariable Calculus

What you should BE ABLE TO DO!

- 1. Differentiate, transform between; Extensive, Intensive, Specific properties
- 2. Find the Dimension and Unit of $\inf f \quad \Delta p = f \rho \frac{l}{d} \frac{v^2}{2}$
- 3. Draw F.B.D.'s of sliding block at positive, negative and zero accelerations
- 4. Find the Gradient of a Multivariable Function
- 5. Find a Multivariable Function from its partial derivatives

Announcement

Binder : Lecture Note(E-Class) Quiz/HW Answer Sheet

Homework HW #1 – Due 9/7 In Class

Next Lecture Ch. 1: 2~4, 6, 7 Fluid Properties

MEC2015 : FLUID MECHANICS